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1            Introduction 

 There is a growing imbalance between supply and demand of the major cereals, 
viz., wheat, rice and maize, which together provide 70 % of the calorifi c intake for 
the world’s population. Whilst in recent years, genetic and agronomic developments 
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have steadily increased the production of these crops, the rate of increase is still less 
than that needed to match the requisite demand. This has caused price volatility and 
fuelled concerns over long-term food security. The demand for cereals is increasing 
in response to increased population and wealth. However, the loss of land for crop 
production due to urbanisation, degradation and alternate uses (e.g. for bioenergy 
crops or leisure) and the projected changes in climate are major obstacles against 
further increases in production. 

 The availability of water is a major determinant of plant production, and shortages 
of water are recognised as major threats to food security (Parry et al.  2005 ). In areas 
with low rainfall and high evapotranspiration (semiarid areas), plant growth can 
also be decreased by soil salinisation, a problem which is exacerbated by irrigation 
of poorly draining soils with low-quality water (Tardieu  2013 ). Developing high-
yielding crops for water-limited environments is a major challenge. Conventional 
breeding for yield under any conditions is diffi cult because of the complex nature of 
the trait, which is determined by multiple genes, the large size of cereal genomes 
and the comparatively limited gene pool available for breeders (Malik et al.  2003 ). 
There is now genome mapping and sequence data available for some major food 
crops such as rice (Sakata et al.  2002 ) and sorghum (Paterson et al.  2009 ). However, 
exploitation of genomic data for improved crop performance under drought is 
limited by the complexity of the underlying traits which are often determined by 
multiple genes (Parry et al.  2005 ; Parry and Reynolds  2007 ) and the seasonal and 
year-on-year variation of water availability. However, biotechnological tools includ-
ing plant transformation, random and targeted mutagenesis, transposon/T-DNA tag-
ging and RNA interference (RNAi) permit the linking of genes to their biological 
function, thereby elucidating their contribution to traits, in ways not previously 
possible (closing the genotype to phenotype gap) (Pérez-Clémente et al.  2013 ). 
With this information, biotechnology has the potential to deliver higher and more 
stable yields for saline and water-limited environments (Fig.  5.1 ).

   Genetic engineering has been used successfully to improve agronomically impor-
tant traits in cereals (Vasil  2007 ). Herbicide-tolerant and insect-resistant genetically 
modifi ed (GM) maize varieties have been in use since the mid-1990s, and insect-
resistant GM rice varieties have been approved for commercialisation in China. The 
market for ‘biotech maize’ is now well established worldwide, with signifi cant culti-
vation even in Europe (Halford  2006 ). The market for wheat biotechnology has proved 
more diffi cult to establish, but experimental GM lines have been produced with 
improved end-use quality traits (Shewry  2007 ; Tamás et al.  2009 ). Here we review the 
biotechnological methodologies that are available and the prospects for their success-
ful application for improving drought and salt tolerance in cereals.  

2     Genetic Approaches 

 Genetic analysis has played a role in wheat breeding for more than a century, and 
by the 1970s, the chromosomal locations had been established for major genes 
controlling dwarfi ng, spike morphology, grain colour and hardness, the major 
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classes of storage proteins, vernalisation and photoperiod response (Snape  1998 ). 
Traits that are controlled by multiple genes and loci (quantitative traits), including 
yield and drought tolerance, have been more intractable, and it was not until the last 
decade of the twentieth century that progress began to accelerate. This was brought 
about by the development of genetic maps based on markers; initially these markers 
were based on restriction fragment length polymorphisms (RFLP), but subsequently 
a range of markers have been developed, including amplifi ed fragment length poly-
morphisms (AFLP), random amplifi cation of polymorphic DNA (RAPD), variable 
number tandem repeats (VNTR), microsatellite polymorphisms based on simple 
sequence repeats (SSR), single-nucleotide polymorphism (SNP), single feature 
polymorphism (SFP) and restriction site-associated DNA markers (RAD). 
Researchers and breeders have been able to construct genetic maps using these 
markers that enable a trait that segregates in a cross, to be attributed to a specifi c 
location in the genome, even if the exact gene responsible is not known. The locus 
that is identifi ed is known as a quantitative trait locus, or QTL. 

  Fig. 5.1    Targets and approaches for improving crop performance under stress conditions.  2DGE  
two-dimensional gel electrophoresis;  EST  expression sequence tag;  MALDI - TOF  matrix-assisted 
laser desorption/ionisation time of fl ight;  MPSS  massively parallel signature sequencing;  QTL  
quantitative trait locus;  SAGE  serial analysis of gene expression       
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2.1     Targeting QTL for Tolerance to Drought and Salinity 

 Marker-assisted selections of target QTLs are powerful support for improving 
productivity under drought and/or saline conditions which will assist selection in the 
breeding process. One of the major diffi culties in drought QTLs identifi cation in crops 
in general and wheat in particular is the identifi cation of the key physiological and 
morphological determinants of drought tolerance. Most QTLs for drought tolerance 
in wheat have been identifi ed through yield and yield measurement under water-
limited conditions (Maccaferri et al.  2008 ). Considerable progress has already been 
made in deconvoluting traits related to water use and in identifying variation in 
component traits (e.g. root traits—Clark et al.  2008 ; Courtois et al.  2009 ; leaf traits—
Khowaja and Price  2008 ; Khowaja et al.  2009 ). The component traits may have direct 
impacts on the uptake and use of water or affect these processes indirectly, for example, 
in some water-limited environments, a shorter life cycle may enable a crop to escape 
from water limitation. Yields can be increased if such traits are strategically targeted 
and effectively selected for drought stress tolerance (Richards et al.  2010 ).  

2.2     Mutagenesis and TILLING 

 Genetic mutation is a powerful tool that establishes a direct link between the 
biochemical function of a gene product and its role in vivo. Chemical mutagens 
have been used for forward genetic screens in a variety of organisms. Compounds, 
such as EMS (ethyl methanesulfonate) and   DMS     (dimethyl sulphate), are used to 
generate   mutants    . This class of mutagens causes a large number of random point 
mutations in the genome, thus theoretically multiple allele of any gene can be 
obtained in the population (Greene et al.  2003 ). Despite the clear advantages of 
EMS mutagenesis, until recently, it has been useful as a tool for reverse genetics 
because of the lack of high-throughput techniques for detecting point mutations. 

 Modern genomics makes reverse genetics possible as large amounts of genomic 
and expressed sequence information become available. In the last few years, the 
TILLING method (for Targeting Induced Local Lesions in Genomes; McCallum et al. 
 2000 ) have been developed. TILLING has been used successfully as a functional 
genomics discovery platform in model organisms such as  Arabidopsis  (McCallum 
et al.  2000 ; Till et al.  2006 ) and in plant systems including rice, barley, maize, wheat 
and soybean (Caldwell et al.  2004 ; Till et al.  2004 ; Slade et al.  2005 ; Anai  2012 ; 
Chen et al.  2012 ). TILLING has several advantages over other techniques used to 
detect single-bp polymorphism. Alleles generated by TILLING can be readily used 
in traditional breeding programmes, since the technology is non- transgenic and the 
mutations are stably inherited. This makes TILLING an attractive strategy not only 
for functional genomics but also for agricultural applications. It can be predicted 
that more and more direct or indirect benefi ts will be revealed through continuous 
applications of TILLING in the near future.   

F. Brini and K. Masmoudi

http://en.wikipedia.org/wiki/Dimethyl_sulfate#Dimethyl%20sulfate
http://en.wikipedia.org/wiki/Mutants#Mutants


101

3     RNA Interference and Its Application in Cereals 

 RNAi is a potent and highly specifi c gene-silencing phenomenon that is based on 
sequence-specifi c RNA degradation following by the formation of double-stranded 
(dsRNA) homologous in sequence to the targeted gene (Marx  2000 ; Baulcombe  2004 ). 

 The natural function of RNAi and its related processes seem to be protection of 
the genome against invasion by mobile genetic elements such as transposons and 
viruses. Given the gene-specifi c feature of RNAi, it is conceivable that this method 
will play an important role in therapeutic application. RNAi has proven to be very 
effi cient in interfering with gene expression in various plant systems such as 
 Arabidopsis thaliana  and rice (Chuang and Meyerowitz  2000 ; Miki et al.  2005 ). 

 Functional genomics using RNAi is particularly an attractive technique for 
genomic mapping and annotation in plants. RNAi has been successfully used for 
functional genomics studies in bread wheat (Travella et al.  2006 ) as well as plant 
model systems such as  Arabidopsis  and maize (McGinnis et al.  2005 ). To develop 
RNAi technology for functional genomics, there is a need to characterise, in molec-
ular detail, the silencing of homologous genes as well as the inheritance of RNAi- 
induced phenotype (Travella et al.  2006 ).  

4     Transcriptome Analyses of Plant Drought 
and Salt Stress Response 

 The transcriptomics approach deals with comprehensive analysis of gene expression 
in a cell. Understanding the transcriptome is essential for analysing the genomic 
function and the molecular constituents of cells and tissues. Different technologies 
have been developed to study the transcriptome, including northern hybridisation 
and quantitative real-time PCR (Q-RT-PCR). The above low-throughput techniques 
are still used for validating the results obtained from global approaches. Advances 
in genomics technologies allow measurement of transcript levels of thousands of 
genes at the same time. The DNA microarray, using the principle of nucleic acid 
hybridisation of mRNA or cDNA fragments, is among these techniques. 

4.1     DNA Microarrays 

 Microarray technology is a powerful tool for analysing the expression profi les of 
many genes (Richmond and Somerville  2000 ; Seki et al.  2004 ). Basically, there are 
two types of microarray formats: cDNA arrays and oligoarrays. Despite its power 
and usefulness, microarray technology is both expensive and time intensive. Besides 
several technical problems such as contamination of DNA in spots on arrays, uneven 
hybridisation and spurious hybridisation, it requires multiple biological and technical 
replications for generating reliable data. Microarray technology has been applied to 
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the analysis of expression profi les in response to abiotic stresses, such as drought, 
high salinity and cold (Kawasaki et al.  2001 ; Seki et al.  2001 ,  2002 ; Chen et al. 
 2002 ; Fowler and Thomashow  2002 ; Kreps et al.  2002 ; Lee et al.  2005 ). Stress- 
responsive genes have been identifi ed in many plant species, such as  Arabidopsis  
(Fowler and Thomashow  2002 ; Lee et al.  2005 ),  Arabidopsis -related halophyte, 
 Thellungiella halophila  (Inan et al.  2004 ; Taji et al.  2004 ; Gong et al.  2005 ; 
Wong et al.  2006 ), rice (Kawasaki et al.  2001 ; Rabbani et al.  2003 ; Lan et al.  2005 ), 
barley (Oztur et al.  2002 ), wheat (Gulick et al.  2005 ), maize (Wang et al.  2003 ; 
Yu and Setter  2003 ), pine (Watkinson et al.  2003 ), hot pepper (Hwang et al.  2005 ), 
potato (Rensink et al.  2005 ), poplar (Gu et al.  2004 ; Brosche et al.  2005 ) and sorghum 
(Buchanan et al.  2005 ).  

4.2     High-Throughput Approaches for the Identifi cation 
of Drought and Salt-Tolerance Genes in Plants 

 The development of automated sequencing technologies has led to the production 
of sequencing machines with dramatically lower costs and higher throughput than 
the technology of just 2 years ago. The high-throughput sequencing technologies 
opened new view into the fi elds, thus allowing scientists to decode the genomes 
of many organisms (Soon et al.  2013 ). Various methods have been developed previ-
ously to directly determine cDNA sequences, based mostly around traditional (and 
more expensive)   Sanger sequencing    , whilst others include methodologies such as 
  serial analysis of gene expression     (SAGE) (Velculescu et al.  1995 ; Harbers and 
Carninci  2005 ),   cap analysis gene expression     (CAGE) (Nakamura and Carninci 
 2004 ; Shiraki et al.  2003 ; Kodzius et al.  2006 ) and   massively parallel signature 
sequencing     (MPSS) (Peiffer et al.  2008 ; Reinartz et al.  2002 ; Brenner et al.  2000 ). 
Recently, mapping and quantifying of transcriptomes can be easily done with the 
development of novel high-throughput DNA sequencing methods. This method, 
termed as RNA-Seq (RNA sequencing), has clear advantages over existing 
approaches and is expected to revolutionise the manner in which transcriptomes 
are analysed. It has already been applied to  Saccharomyces cerevisiae , 
 Schizosaccharomyces pombe ,  Arabidopsis thaliana  and mouse and human cells 
(Wilhelm et al.  2008 ; Nagalakshmi et al.  2008 ; Lister et al.  2008 ; Mortazavi et al. 
 2008 ; Cloonan et al.  2008 ; Marioni et al.  2008 ). The unbiased information on tran-
script sequence abundance and unparalleled ability of HTS to quantitative yield has 
afforded some remarkable new insights into transcriptome complexity and regula-
tion. RNA-Seq provides quantitative readout and extremely reproducible transcript 
abundance (e.g. Li et al.  2008 ; Marioni et al.  2008 ; Pan et al.  2008 ; Wang et al. 
 2008a ). RNA-Seq offers a large dynamic range of expression levels and a high-level 
reproducibility and less RNA sample than either large-scale Sanger expressed 
sequenced tag (EST) sequencing or tiling arrays (Soneson and Delorenzi  2013 ). 
Transcriptome Sequencing (RNA-Seq) can be done with a variety of platforms to test 
many ideas and hypotheses such as HiSeq (Illumina, formerly Solexa), 5500xl 
SOLiD System (Live Technologies) and 454 Genome Analyzer FLX (Roche). 
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The various technologies differ in the procedures used to array the DNA fragments. 
There are two key features that determine which sequencing platform is best suited 
for each experiment: the length of sequenced reads and the total number of sequenced 
reads output. In general, the 454 Genome Analyzer FLX sequencer generates reads 
of up to 200–300 bp and is currently best suited for applications involving de novo 
genome and transcriptome assemblies. In contrast, HiSeq and SOLiD generate 
approximately 35 bp reads and are best suited for resequencing or applications such 
as gene profi ling where the short length of the microread is not a concern.  

4.3     Gene Expression Profi ling for Abiotic Stress 
Tolerance in Crops 

 Several new stress-related pathways, in addition to the previously well-described 
stress-related genes, have been related to abiotic stress transcriptome profi ling in 
model species such as  Arabidopsis  and rice (Desikan et al.  2001 ; Kreps et al.  2002 ; 
Chen et al.  2002 ; Seki et al.  2002 ; Oh et al.  2005 ; Wang et al.  2011 ). ESTs are cur-
rently used as an effi cient and fast method for profi ling genes expressed in various 
tissues, cell types or stages of development (Andrews et al.  2001 ). Based on the 
research results, estimates of gene number in the cereals are very similar to other 
complex organisms; for example, a total of approximately 13,000 abiotic stress- 
related ESTs were reported in barley and rice (Zhang et al.  2004 ) and approximately 
21,000 ESTs in wheat (Mochida et al.  2004 ). The clustering of ESTs sequence 
generated from abiotic stress-treated cDNA libraries provides information on gene 
number and gene families involved in stress responses. Gene expression profi ling 
using cDNA macroarrays or microarrays will provide an opportunity for the discovery 
of higher number of transcripts and pathways related to stress tolerance mecha-
nisms. There are few published reports on the use of barley or wheat chips for studying 
altered gene expression in response to abiotic stress.   

5     Proteomic Approaches for Abiotic Stress Response 

 The importance of protein profi ling has long been acknowledged in plant abiotic 
stress studies. Proteomics not only involves large-scale identifi cation of proteins but 
also deals with analysis of all protein isoforms and post-translational modifi cations, 
protein-protein interactions, enzymatic assays for the functional determination, 
localisation studies of gene products and promoter activity and structural informa-
tion of protein complexes (Wilkins et al.  1996 ; Brosche et al.  2005 ). The advance-
ment in MS techniques (O’Farrell  1975 ) coupled with database searching have 
played a crucial role in proteomics for proteins identifi cation. Databases have been 
constructed containing all expressed proteins from plant organs and cell organelles 
of various species (Table  5.1 ).
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   Table 5.1    Websites for plant omics research   

  Transcriptomics-related websites  
 Genevestigator  http://www.genevestigator.com/gv/index.jsp 
 Gene expression omnibus    http://www.ncbi.nlm.nih.gov    /projects/geo 
 Stanford Microarray Database    http://smd.stanford.edu/index.shtml     
 ArrayExpress    http://www.ebi.ac.uk/arrayexpress     
 PLEXdb    http://www.barleybase.org/plexdb/html/index.php     
 TIGR  Arabidopsis  arrays    http://www.jcvi.org/arabidopsis/qpcr/     
 Rice transcriptional database    http://microarray.rice.dna.affrc.go.jp     
 Rice Expression Database (RED)    http://red.dna.affrc.go.jp/RED/     
 BarleyBase    http://www.barleybase.org     
 Zeamage    www.maizearray.org     
 TIGR Solanaceae Genomics Resource    http://www.jcvi.org/potato/     
 Soybean Genomics and Microarray 

Database 
   http://psi081.ba.ars.usda.gov/SGMD/default.htm     

 Tomato Expression Database    http://ted.bti.cornell.edu     
  Genomics-related websites  
 EMBL nucleotide sequence database    http://www.ebi.ac.uk/embl     
 National Center for Biotechnology 

Information 
   http://www.ncbi.nlm.nih.gov     

 Gramene    http://www.gramene.org     
 GrainGenes    http://wheat.pw.usda.gov     
 Gene Ontology    www.geneontology.org     
 The Arabidopsis Information Resource 

(TAIR) 
   http://arabidopsis.org/index.jsp     

 Rice Genome Project (RGP)    http://rgp.dna.affrc.go.jp/     
 RiceGE    http://signal.salk.edu/cgi-bin/RiceGE     
 Oryzabase    http://www.shigen.nig.ac.jp/rice/oryzabase/top/top.jsp     
 Maize Sequence    http://maizesequence.org/index.html     
 Maize genome resources    http://www.maizegenome.org/     
 Maize Genetics and Genomics Database    http://www.maizegdp.org/genome/     
 Sorghum Genomics    http://sorghoblast3.tamu.edu     
  Proteomics-related websites  

 Proteome analysis at EBI    http://www.ebi.ac.uk/proteome/     
 Swiss-Prot    http://us.expasy.org/sprot/     
 Arabidopsis Membrane Protein Library    http://www.cbs.umn.edu/arabidopsis/     
 Database for  A .  thaliana  annotation    http://luggagefast.Stanford.EDU/group/arabprotein/     
 ExPASy  A. thaliana  2D-proteome 

database 
   http://expasy.ch/cgi-bin/map2/def?ARABIDOPSIS     

 PlantsP: Functional Genomics of Plant 
Phosphorylation 

   http://PlantsP.sdsc.edu/     

   A major limitation of the current technology is the reduced coverage and inability 
to detect low abundance proteins. High-resolution 2D gels can resolve about 1,000 
proteins that are highly abundant in a crude mixture. Even under optimal condi-
tions, approximately 25 % of the proteome may be observed (Zivy and deVienne 
 2000 ). However, development in direct mass spectrometric analysis is increasing 
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sensitivity, robustness and data handling (Wilkins et al.  1996 ). A number of pro-
teome-wide platforms have been developed to complement mass spectrometric plat-
forms. Yeast two-hybrid systems (Unlu et al.  1997 ) can detect weak interactions 
between low abundance proteins. Analogous to DNA microarrays, protein microar-
rays (Bayer et al.  2005 ) allow rapid interrogation of protein activity. The intensity or 
identity of resulting protein-protein interactions may be determined by fl uorescence 
imaging or mass spectrometry. 

 New insights have been obtained on plant adaptation to abiotic stresses through 
application of proteomics approach to organelles and tissues in several plant species 
(Eldakak et al.  2013 ). Proteomics provided excellent opportunities to study the 
response of plants to stresses caused by heat, drought, salinity, ozone, heavy metals, 
UV light, nutrient defi ciencies and elevated CO 2  conditions (Majoul et al.  2000 ). 
Proteome of poplar leaves (MacBeath  2002 ), rice anthers and leaves (Taylor et al. 
 2005 ; Renaut et al.  2006 ) and mitochondria of  Pisum sativum  (Fields and Song 
 1989 ) have been analysed to study plant response to cold stress. The effect of salin-
ity stress, especially in crops plants, was investigated by comparative proteome 
studies in various tissue types in rice (Imin et al.  2004 ; Cui et al.  2005 ; Parker et al. 
 2006 ; Chitteti and Peng  2006 ), wheat (Yan et al.  2005 ; Zhang et al.  2009 ) and barley 
(Wang et al.  2008b ). 

 Although proteomics has been exploited in abiotic stress tolerance studies in 
plants, large-scale proteomics studies are still limited. Application of proteomic 
approach particularly the comparative proteomics studies provided essential infor-
mation about stress-induced alterations in protein quantity and quality and specifi c 
modifi cations of proteome (Abbasi and komatsu  2004 ).  

6     Genetic Transformations of Cereals 

 Cereal improvement by genetic engineering requires the delivery, integration and 
expression of defi ned foreign genes into suitable regenerable explants. The avail-
able technologies and approaches used for production of transgenic cereal crops are 
complicated, and their effi ciency is low. Moreover, different varieties of the same 
cereal crop and even different explants of the same variety would often require dif-
ferent methods for transformation. Two main methods are widely used for cereal 
transformation: (1) DNA transfer via particle bombardment developed by Sanford 
( 1988 ) based on the use of the helium-driven PDS-1000/He particle gun and (2) 
 Agrobacterium -based systems which exploit the ability to transfer a particular 
T-DNA on the tumour-inducing (Ti) plasmid into the nucleus of infected cells where 
it is then stably integrated into the host genome. Both of these methods involve 
delivery of the transgene to callus tissue, followed by selection of transformed cells 
and regeneration of plantlets carrying the gene of interest. Each method has its 
advantages and limitations: biolistic transformation facilitates a broad variety of 
transformation strategies with a wide range of gene expression, has no host limita-
tions or biological constraints, and diverse cell types can be targeted effi ciently for 
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foreign DNA delivery (Altpeter et al.  2005 ). The main limitations of the bombard-
ment approach include the insertion of backbone vector DNA and the insertion of 
multiple copies and fragmentation of the DNA during bombardment (Hu et al. 
 2003 ; Janakiraman et al.  2002 ). Numerous downstream breeding cycles are needed 
to select out those transgenic plants with good insertions and then to regenerate the 
homozygous lines used in breeding programmes for the development of a commer-
cial product. Whereas  Agrobacterium -mediated method is a simple, low cost alter-
native to particle bombardment. In addition, the  Agrobacterium -mediated 
transformation system facilitates the precise integration of a small number of gene 
copies into the plant genome and shows a greater degree of stability for the trans-
gene. Unlike microprojectile bombardment,  Agrobacterium  method seems to induce 
less transgene silencing, since introduced genes remain transcriptional active and 
has higher transformation effi ciency than the microprojectile bombardment method. 
For all these reasons,  Agrobacterium -mediated transformation has been adopted as 
the method of choice for most cereals. Therefore, main focus in this review will be 
on this transformation method. 

 The fi rst success in cereal transformation using  Agrobacterium  was reported by 
Hiei et al. ( 1994 ) for stable transformation of rice.  Agrobacterium -mediated trans-
formation of other agronomically important cereal crop species, such as barley 
(Tingay et al.  1997 ), maize (Ishida et al.  1996 ) and wheat (Cheng et al.  1997 ), has 
now succeeded. For wheat, most of the research effort has focused on the model 
spring genotype ‘Bobwhite’ (Cheng et al.  1997 ,  2003 ; Haliloglu and Baenziger 
 2003 ; Hu et al.  2003 ), but reports of  Agrobacterium  transformation have been made 
using other spring varieties, Verry5, Cadenza, Fielder (Jones et al.  2005 ; Weir et al. 
 2001 ; Khanna and Daggard  2003 ; Wu et al.  2003 ), and the winter-type Florida 
(Wu et al.  2003 ; Jones et al.  2005 ). 

 Most of the protocols, effi ciently used for cereal transformation, generally rely 
on the use of hypervirulent  Agrobacterium  strains such as AGL-0 and AGL-1 in 
wheat and barley (Tingay et al.  1997 ; Wu et al.  2003 ; Hensel et al.  2008 ), EHA101 
and EHA105 in maize (Hood et al.  1986 ) as well as hypervirulent derivatives of 
LBA4404 in barley, maize and wheat (Khanna and Daggard  2003 ; Kumlehn et al. 
 2006 ; Hensel et al.  2008 ). 

 The recovery of stable plant cells after  Agrobacterium -mediated transformation 
remains however infl uenced by many factors such as  Agrobacterium  strain, 
 Agrobacterium  density and surfactants, genotype, explant, binary vector, selectable 
marker gene and promoter, inoculation and coculture medium, inoculation and 
coculture conditions, regeneration medium, desiccation, osmotic treatment and 
tissue culture (Shrawat and Lorz  2006 ; Cheng et al.  2004 ). Some of these factors 
represent a drawback in extending the  Agrobacterium -mediated transformation sys-
tem to elite cultivars of economically important cereals. These limitations inspired 
some investigators to search for new alternative transformation procedures such as 
in planta transformation which involves no in vitro culture of plant cells or tissue 
(Supartana et al.  2005 ; Lin et al.  2009 ) or the fl ower dipping method originally 
developed for  Arabidopsis thaliana  transformation (Zale et al.  2009 ). Although 
these alternative methods seem simple and straightforward, yet they are technically 
challenging, and the results are not always convincing.  
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7     Conclusions and Future Perspective 

 Plants are often exposed to multiple abiotic stresses. Considerable advances have 
been made in understanding the plant’s adaptation in stress environments and complex 
genetics involving multitude of gene and stress tolerance mechanisms. There    is a 
great potential of genetic breeding for drought and salinity tolerance through the 
contribution of wild relatives to the identifi cation of drought and salinity QTLs and 
functional markers. Gene expressing profi ling has been widely used to understand 
mechanisms involved in the response of plants to abiotic stresses. Its application 
will determine a new revolution in crop research as technologies with lower costs. 
Future research effort should be directed using the omics approaches to elucidate 
plant’s response to abiotic stresses. High-throughput omics technologies coupled 
with easily accessible integrated databases should now facilitate the elucidation of 
the complex stress regulatory network and their components to understand the 
mechanism of stress tolerance. The real benefi ts of these technologies, however, 
will only be realised when the knowledge and the tools resulting from the advances 
in omics fi eld are translated into a product with improved abiotic stress tolerance in 
fi eld environment.     
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